LUM RESEARCH
Sustainable electrochemistry for a low-carbon future
SELECTED PUBLICATIONS
#These authors contributed equally
(27)
Wang, M.#; Li, Y.#; Jia, J.#; Ghosh, T.#; Luo, P.; Shen, Y.; Wang, S.; Zhang, J.; Xi, S.; Mi, Z.; Zhang, M.; Leow, W.R.; Johannessen, B.; Abdin, Z.; Hung, S.; Zhang, J.; Lum, Y. Tuning catalyst-support interactions enable steering of electrochemical CO2 reduction pathways.
Science Advances Accepted in press
(26)
Zang, Y.#; Liu, Y.#; Lu, R.; Yang, Q.; Wang, B.; Zhang, M.; Mao, Y.; Wang, Z.; Lum, Y. Tuning transition metal 3d spin state on single-atom catalysts for selective electrochemical CO2 reduction.
Advanced Materials Accepted in press
(25)
Wu, B.#; Lu, R.#; Wu, C.#; Yuan, T.; Liu, B.; Wang, X.; Fang, C.; Mi, Z.; Bin Dolmanan, S.; Tjiu, W. W.; Zhang, M.; Wang, B.; Aabdin, Z.; Zhang, S.; Hou, Y.; Zhao, B.; Xi, S.; Leow, W. R.; Wang, Z.; Lum, Y. Pt/IrOx enables selective electrochemical C-H chlorination at high current.
Nature Communications 2025, 16 (1), 166.
(24)
Wu, B.#; Voleti, L.D.#; Fenwick, A.Q.; Wu, C.; Zhang, J.; Ling, N.; Wang, M.; Jia, Y.; Tjiu, W. W.; Zhang, M.; Aabdin, Z.; Xi, S.; Mathpati, C.S.; Zhang, S.; Atwater, H.A.; Karimi, I.A.; Lum, Y. A reversed gas diffusion electrode enables collection of high purity gas products from CO2 electroreduction.
EES Catalysis Accepted in press
(23)
Wang, B.#; Wang, X.#; Wu, B.#; Li, P.#; Chen, S.; Lu, R.; Lai, W.; Shen, Y.; Zhuang, Z.; Zhu, J.; Wang, Z.; Wang, D.; Lum, Y. Organic Molecule Functionalization Enables Selective Electrochemical Reduction of Dilute CO2 Feedstock.
Angewandte Chemie DOI: 10.1002/anie.202417196
Selected by editor as "Very Important Paper"
(22)
Wu, T.#; Dhaka, K.#; Luo, M.#; Wang, B.; Wang, M.; Xi, S.; Zhang, M.; Huang, F.; Exner, K.S.; Lum, Y. Cooperative Active Sites on Ag2Pt3TiS6 for Enhanced Low-Temperature Ammonia Fuel Cell Electrocatalysis.
Angewandte Chemie DOI:10.1002/anie.202418691
(21)
Zhang, J.#; Huang, L.#; Tjiu, W. W.; Wu, C.; Zhang, M.; Bin Dolmanan, S.; Wang, S.; Wang, M.; Xi, S.; Aabdin, Z.; Lum, Y. Evidence for distinct active sites on oxide-derived Cu for electrochemical nitrate reduction.
Journal of the American Chemical Society 2024, 146, 44, 30708–30714
(20)
Wu, B.#; Wang, B.#; Cai, B.#; Wu, C.; Tjiu, W. W.; Zhang, M.; Aabdin, Z.; Xi, S.; Lum, Y. A solid-state electrolyte enables acidic CO2 electrolysis without alkali metal cations by regulating proton transport.
Journal of the American Chemical Society 2024, 146, 43, 29801–29809
Selected as issue Front Cover
(19)
Wang, B.#; Wang, M.#; Fan, Z.; Ma, C.; Xi, S.; Chang, L. Y.; Zhang, M.; Ling, N.; Mi, Z.; Chen, S.; Leow, W. R.; Zhang, J.; Wang, D.; Lum, Y. Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts.
Nature Communications 2024, 15 (1), 1719.
Highlighted by NUS news and Zaobao
(18)
Wang, M.#; Wang, B.#; Zhang, J.#; Xi, S.; Ling, N.; Mi, Z.; Yang, Q.; Zhang, M.; Leow, W. R.; Zhang, J.; Lum, Y. Acidic media enables oxygen-tolerant electrosynthesis of multicarbon products from simulated flue gas.
Nature Communications 2024, 15 (1), 1218.
Highlighted by NUS news and Zaobao
(17)
Qi, J.; Xu, J.; Ang, H. T.; Wang, B.; Gupta, N.; Dubbaka, S. R.; O'Neill, P.; Mao, X.; Lum, Y.; Wu, J. Electrophotochemical Synthesis Facilitated Trifluoromethylation of Arenes Using Trifluoroacetic Acid.
Journal of the American Chemical Society 2023, 145 (45), 24965–24971.
Highlighted by Chemistry Views
(16)
Lum, Y.; Ager, J.W. Two active sites are better than one.
Nature Catalysis 2023, 6 (1), 864–865.
(15)
Ling, N.; Zhang, J.; Wang, M.; Wang, Z.; Mi, Z.; Bin Dolmanan, S.; Zhang, M.; Wang, B.; Leow, W. R.; Zhang, J.; Lum, Y. Acidic Media Impedes Tandem Catalysis Reaction Pathways in Electrochemical CO2 Reduction.
Angewandte Chemie 2023, 62, e202308782.
Selected by editor as "Hot Paper"
(14)
Bin Dolmanan, S.#; Böhme, A.#; Fan, Z.#; King, A. J.; Fenwick, A. Q.; Handoko, A. D.; Leow, W. R.; Weber, A.Z.; Ma, X.; Khoo, E.; Atwater, H. A.; Lum, Y. Local microenvironment tuning induces switching between electrochemical CO2 reduction pathways.
Journal of Materials Chemistry A 2023, 11, 13493-13501.
Top 50 most popular articles published in Journal of Materials Chemistry A in 2023
(13)
Yao, Z.# ; Lum, Y.# ; Johnston, A.#; Mejia-Mendoza, L. M.; Zhou, X.; Wen, Y.; Aspuru-Guzik, A.; Sargent, E. H.; Seh, Z. W. Machine learning for a sustainable energy future.
Nature Reviews Materials 2023, 8 (3), 202-215.
(12)
Li, Y.# ; Xu, A. # ; Lum, Y.# ; Wang, X.; Hung, S. F.; Chen, B.; Wang, Z.; Xu, Y.; Li, F.; Abed, J.; Huang, J. E.; Rasouli, A. S.; Wicks, J.; Sagar, L. K.; Peng, T.; Ip, A. H.; Sinton, D.; Jiang, H.; Li, C.; Sargent, E. H. Promoting CO2 methanation via ligand stabilized metal oxide clusters as hydrogen-donating motifs.
Nature Communications 2020, 11 (1), 6190.
(11)
Leow, W.​ R.#; Lum, Y.​#; Ozden, A.; Wang, Y.; Nam, D. H.; Chen, B.; Wicks, J.; Zhuang, T. T.; Li, F.; Sinton, D.; Sargent, E. H. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density.
Science 2020, 368 (6496), 1228-1233.
Highlighted in Science perpspectives
(10)
Lum, Y.​#; Huang, J. E.​#; Wang, Z.; Luo, M.; Nam, D. H.; Leow, W. R.; Chen, B.; Wicks, J.; Li, Y. C.; Wang, Y.; Dinh, C. T.; Li, J.; Zhuang, T. T.; Li, F.; Sham, T. K.; Sinton, D; Sargent, E. H. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol.
Nature Catalysis 2020, 3 (1), 14–22.
Highlighted in Nature Catalysis News & Views
(9)
Lum, Y.; Ager, J. W. Evidence for Product-Specific Active Sites on Oxide-Derived Cu Catalysts for Electrochemical CO2 Reduction.
Nature Catalysis 2019, 2 (1), 86–93.
Highlighted by ScienceDaily and 9 other News Agencies
(8)
Lum, Y.​#; Cheng, T.​#; Goddard, W. A.; Ager, J. W. Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products.
Journal of the American Chemical Society 2018, 140 (30), 9337–9340.
(7)
Lum, Y.; Ager, J. W. Stability of Residual Oxides in Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction Investigated With 18O Labeling.
Angewandte Chemie 2018, 57 (2), 551–554.
(6)
Lum, Y.; Ager, J. W. Sequential Catalysis Controls Selectivity in Electrochemical CO2 Reduction on Cu.
Energy and Environmental Science 2018, 11 (10), 2935–2944.
(5)
Lum, Y.; Yue, B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W. Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction.
The Journal of Physical Chemistry C 2017, 121 (26), 14191–14203.
(4)
Singh, M. R.​#; Kwon#, Y.; Lum, Y.​#; Ager, J. W.; Bell, A. T. Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu.
Journal of the American Chemical Society 2016, 138 (39), 13006–13012.
(3)
Kwon, Y.​#; Lum, Y.​#; Clark, E. L.; Ager, J. W.; Bell, A. T. CO2 Electroreduction with Enhanced Ethylene and Ethanol Selectivity by Nanostructuring Polycrystalline Copper.
ChemElectroChem 2016, 3, 1012–1019.
(2)
Lum, Y.​#; Kwon, Y.​#; Lobaccaro, P.; Chen, L.; Clark, E. L.; Bell, A. T.; Ager, J. W. Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO2 Reduction Activity.
ACS Catalysis 2016, 6 (1), 202–209.
(1)
Ding, N.​#; Lum, Y.#; Chen, S.; Chien, S. W.; Hor, T. S. A.; Liu, Z.; Zong, Y. Sulfur-Carbon Yolk-Shell Particle Based 3D Interconnected Nanostructures as Cathodes for Rechargeable Lithium-Sulfur Batteries.
Journal of Materials Chemistry A 2015, 3, 1853-1857.