top of page

SELECTED PUBLICATIONS

#These authors contributed equally

(19)

Wang, B.#; Wang, M.#; Fan, Z.; Ma, C.; Xi, S.; Chang, L. Y.; Zhang, M.; Ling, N.; Mi, Z.; Chen, S.; Leow, W. R.; Zhang, J.; Wang, D.; Lum, Y. Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts.

Nature Communications 2024, 15 (1), 1719.

(18)

Wang, M.#; Wang, B.#; Zhang, J.#; Xi, S.; Ling, N.; Mi, Z.; Yang, Q.; Zhang, M.; Leow, W. R.; Zhang, J.; Lum, Y. Acidic media enables oxygen-tolerant electrosynthesis of multicarbon products from simulated flue gas.

Nature Communications 2024, 15 (1), 1218.

(17)

Qi, J.; Xu, J.; Ang, H. T.; Wang, B.; Gupta, N.; Dubbaka, S. R.; O'Neill, P.; Mao, X.; Lum, Y.; Wu, J. Electrophotochemical Synthesis Facilitated Trifluoromethylation of Arenes Using Trifluoroacetic Acid.

Journal of the American Chemical Society 2023, 145 (45), 24965–24971.

Highlighted by Chemistry Views

(16)

Lum, Y.; Ager, J.W. Two active sites are better than one.

Nature Catalysis 2023, 6 (1), 864–865.

(15)

Ling, N.; Zhang, J.; Wang, M.; Wang, Z.; Mi, Z.; Bin Dolmanan, S.; Zhang, M.; Wang, B.; Leow, W. R.; Zhang, J.; Lum, Y. Acidic Media Impedes Tandem Catalysis Reaction Pathways in Electrochemical CO2 Reduction.

Angewandte Chemie 2023, 62, e202308782.

Selected by editor as "Hot Paper"

(14)

Bin Dolmanan, S.# ; Böhme, A.# ; Fan, Z.# ; King, A. J.; Fenwick, A. Q.; Handoko, A. D.; Leow, W. R.; Weber, A.Z.; Ma, X.; Khoo, E.; Atwater, H. A.; Lum, Y. Local microenvironment tuning induces switching between electrochemical CO2 reduction pathways.

Journal of Materials Chemistry A 2023, 11, 13493-13501.

Top 50 most popular articles published in Journal of Materials Chemistry A in 2023

(13)

Yao, Z.# ; Lum, Y.# ; Johnston, A.#; Mejia-Mendoza, L. M.; Zhou, X.; Wen, Y.; Aspuru-Guzik, A.; Sargent, E. H.; Seh, Z. W. Machine learning for a sustainable energy future.

Nature Reviews Materials 2023, 8 (3), 202-215. 

(12)

Li, Y.# ; Xu, A. # ; Lum, Y.# ; Wang, X.; Hung, S. F.; Chen, B.; Wang, Z.; Xu, Y.; Li, F.; Abed, J.; Huang, J. E.; Rasouli, A. S.; Wicks, J.; Sagar, L. K.; Peng, T.; Ip, A. H.; Sinton, D.; Jiang, H.; Li, C.; Sargent, E. H. Promoting CO2 methanation via ligand stabilized metal oxide clusters as hydrogen-donating motifs.

Nature Communications 2020, 11 (1), 6190. 

(11)

Leow, W.​ R.#; Lum, Y.​#; Ozden, A.; Wang, Y.; Nam, D. H.; Chen, B.; Wicks, J.; Zhuang, T. T.; Li, F.; Sinton, D.; Sargent, E. H. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density.

Science 2020, 368 (6496), 1228-1233.

Highlighted in Science perpspectives

(10)

Lum, Y.​#; Huang, J. E.​#; Wang, Z.; Luo, M.; Nam, D. H.; Leow, W. R.; Chen, B.; Wicks, J.; Li, Y. C.; Wang, Y.; Dinh, C. T.; Li, J.; Zhuang, T. T.; Li, F.; Sham, T. K.; Sinton, D; Sargent, E. H. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. 

Nature Catalysis 2020, 3 (1), 14–22.

Highlighted in Nature Catalysis News & Views

(9)

Lum, Y.; Ager, J. W. Evidence for Product-Specific Active Sites on Oxide-Derived Cu Catalysts for Electrochemical CO2 Reduction. 

Nature Catalysis 2019, 2 (1), 86–93.

Highlighted by ScienceDaily and 9 other News Agencies

(8)

Lum, Y.​#; Cheng, T.​#; Goddard, W. A.; Ager, J. W. Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products.

Journal of the American Chemical Society 2018, 140 (30), 9337–9340.

(7)

Lum, Y.; Ager, J. W. Stability of Residual Oxides in Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction Investigated With 18O Labeling.

Angewandte Chemie 2018, 57 (2), 551–554.

(6)

Lum, Y.; Ager, J. W. Sequential Catalysis Controls Selectivity in Electrochemical CO2 Reduction on Cu.

Energy and Environmental Science 2018, 11 (10), 2935–2944.

(5)

Lum, Y.; Yue, B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W. Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction. 

The Journal of Physical Chemistry C 2017, 121 (26), 14191–14203.

(4)

Singh, M. R.​#; Kwon#, Y.; Lum, Y.​#; Ager, J. W.; Bell, A. T. Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. 

Journal of the American Chemical Society 2016, 138 (39), 13006–13012.

(3)

Kwon, Y.​#; Lum, Y.​#; Clark, E. L.; Ager, J. W.; Bell, A. T. CO2 Electroreduction with Enhanced Ethylene and Ethanol Selectivity by Nanostructuring Polycrystalline Copper. 

ChemElectroChem 2016, 3, 1012–1019.

(2)

Lum, Y.​#; Kwon, Y.​#; Lobaccaro, P.; Chen, L.; Clark, E. L.; Bell, A. T.; Ager, J. W. Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO2 Reduction Activity.

ACS Catalysis 2016, 6 (1), 202–209.

(1)

Ding, N.​#; Lum, Y.#; Chen, S.; Chien, S. W.; Hor, T. S. A.; Liu, Z.; Zong, Y. Sulfur-Carbon Yolk-Shell Particle Based 3D Interconnected Nanostructures as Cathodes for Rechargeable Lithium-Sulfur Batteries. 

Journal of Materials Chemistry A 2015, 3, 1853-1857.

bottom of page