Image by Hal Gatewood

WE HAVE MOVED TO A NEW WEBSITE

https://lumyanwei.wixsite.com/lumresearch

 
39900083_10216235426227313_8903360783908

DR. YANWEI LUM

NATIONAL UNIVERSITY OF SINGAPORE

Tenure-track Assistant Professor
Presidential Young Professorship (PYP)
Department of Chemical and Biomolecular Engineering (ChBE)

Starting September 2021

IMRE, A*STAR

2019 - Present

Scientist I
Principal Investigator
Electronic Materials Department (ELE)

UNIVERSITY OF TORONTO

2018 - 2019

PostDoctoral Fellow
Advisor: Edward H. Sargent
Department of Electrical and Computer Engineering

UC BERKELEY

2013 - 2018

Graduate Student
Advisor: Joel W. Ager and Fiona M. Doyle
Department of Materials Science and Engineering

 

RESEARCH AREAS

CO2 CONVERSION TO CHEMICALS AND FUELS

Efficiently recycling CO2 waste into value-added products can enable the means to achieve a truly sustainable energy economy. This can be accomplished by the electrochemical conversion CO2 into chemicals/fuels using renewable electricity.

Our focus here is on electrocatalyst design, electrolyte engineering and reactor systems development. In addition, we will develop new tools to understand the fundamental mechanisms behind CO2 conversion. 

ELECTROCHEMISTRY FOR ORGANIC SYNTHESIS

Electrochemistry offers new routes for organic molecule synthesis, that is potentially simpler, faster and more efficient compared to traditional ones.

Of strong interest is the production of pharmaceutically relevant molecules. We will focus on electrode development and providing a clearer understanding of the mechanisms behind electrochemically driven organic transformations.

HYDROGEN STORAGE

One of the largest impediments to building a viable and sustainable hydrogen economy is the storage and transport. Current means are expensive and have safety concerns.

We are investigating novel hydrogen storage systems that  have high hydrogen storage capacity. These will be able to reversibly release and store hydrogen using only low-energy inputs. Furthermore, these will be low-cost and non-toxic. 

 
NUS_logo_full-horizontal_edited.jpg

JOIN THE LUM RESEARCH LAB

We are seeking passionate, talented and highly-driven candidates for multiple PhD and PostDoctoral positions available at the NUS Chemical and Biomolecular Engineering (ChBE).

Undergraduate students are also welcome to enquire for research opportunities.


Please contact me at Lum_Yanwei@imre.a-star.edu.sg for more details.

 

Selected Publications

Full list can be found via Google Scholar.

#These authors contributed equally


(12) Li, Y.# ; Xu, A. # ; Lum, Y.# ; Wang, X.; Hung, S. F.; Chen, B.; Wang, Z.; Xu, Y.; Li, F.; Abed, J.; Huang, J. E.; Rasouli, A. S.; Wicks, J.; Sagar, L. K.; Peng, T.; Ip, A. H.; Sinton, D.; Jiang, H.; Li, C.; Sargent, E. H. Promoting CO2 methanation via ligandstabilized metal oxide clusters as hydrogen-donating motifs.

Nature Communications 2020, 11 (1), 6190. 

(11) Leow, W.​#; Lum, Y.​#; Ozden, A.; Wang, Y.; Nam, D. H.; Chen, B.; Wicks, J.; Zhuang, T. T.; Li, F.; Sinton, D.; Sargent, E.H. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density.

Science 2020, 368 (6496), 1228-1233. Highlighted in Science perspectives.


(10) Lum, Y.​#; Huang, J. E.​#; Wang, Z.; Luo, M.; Nam, D. H.; Leow, W. R.; Chen, B.; Wicks, J.; Li, Y. C.; Wang, Y.; Dinh, C. T.; Li, J.; Zhuang, T. T.; Li, F.; Sham, T. K.; Sinton, D; Sargent, E. H. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. 

Nature Catalysis 2020, 3 (1), 14–22. Highlighted in Nature Catalysis News & Views.

(9) Lum, Y.; Ager, J. W. Evidence for Product-Specific Active Sites on Oxide-Derived Cu Catalysts for Electrochemical CO2 Reduction. 

Nature Catalysis 2019, 2 (1), 86–93. Highlighted by ScienceDaily and 9 other News Agencies.

(8) Lum, Y.​#; Cheng, T.​#; Goddard, W. A.; Ager, J. W. Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products.

Journal of the American Chemical Society 2018, 140 (30), 9337–9340.

​​

(7) Lum, Y.; Ager, J. W. Stability of Residual Oxides in Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction Investigated With 18O Labeling.

Angewandte Chemie 2018, 57 (2), 551–554.

(6) Lum, Y.; Ager, J. W. Sequential Catalysis Controls Selectivity in Electrochemical CO2 Reduction on Cu.

Energy and Environmental Science 2018, 11 (10), 2935–2944.

​​

(5) Lum, Y.; Yue, B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W. Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction. 

The Journal of Physical Chemistry C 2017, 121 (26), 14191–14203.

​​

(4) Singh, M. R.​#; Kwon#, Y.; Lum, Y.​#; Ager, J. W.; Bell, A. T. Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. 

Journal of the American Chemical Society 2016, 138 (39), 13006–13012.

​​

(3) Kwon, Y.​#; Lum, Y.​#; Clark, E. L.; Ager, J. W.; Bell, A. T. CO2 Electroreduction with Enhanced Ethylene and Ethanol Selectivity by Nanostructuring Polycrystalline Copper. 

ChemElectroChem 2016, 3, 1012–1019.

(2) Lum, Y.​#; Kwon, Y.​#; Lobaccaro, P.; Chen, L.; Clark, E. L.; Bell, A. T.; Ager, J. W. Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO2 Reduction Activity.

ACS Catalysis 2016, 6 (1), 202–209.

​​

(1) Ding, N.​#; Lum, Y.#; Chen, S.; Chien, S. W.; Hor, T. S. A.; Liu, Z.; Zong, Y. Sulfur-Carbon Yolk-Shell Particle Based 3D Interconnected Nanostructures as Cathodes for Rechargeable Lithium-Sulfur Batteries. 

Journal of Materials Chemistry A 2015, 3, 1853-1857.

 

CONTACT

2 Fusionopolis Way, Innovis, Singapore 138634

+65-64168956

Thanks for submitting!